Convergence Analysis and Comparison of the H- and P- Extensions with Mixed Finite Element
نویسندگان
چکیده
A mixed formulation with two main variables, based on the Ciarlet-Raviart technique, with 0 C continuity shape functions is employed for the solution of some types of biharmonic equations in 1-D. The continuous and discrete Babuška-Brezzi inf-sup conditions are established. The formulation is numerically tested for both the hand pextensions. The model problems involve the standard biharmonic equation, with variable bending stiffness (with both regular and irregular exact solutions), as well as, a more general biharmonic equation with lower order term, constant coefficients and complicated boundary conditions (with smooth exact solution), resulting from a gradient elasticity problem. The standard, quasi-optimal finite element error rates of convergence are numerically confirmed in all cases. The basic conclusion of the numerical experimentation is that the p-extension provides much better accuracy than the h-extension, for both main variables. For the irregular exact solution, the observed rate of convergence corresponding to the second variable (displacements) is always higher than the error rate for the first variable (bending moment). The latter may be theoretically explained via the particular structure of the bilinear functionals of the given formulation.
منابع مشابه
A New Finite Element Formulation for Buckling and Free Vibration Analysis of Timoshenko Beams on Variable Elastic Foundation
In this study, the buckling and free vibration of Timoshenko beams resting on variable elastic foundation analyzed by means of a new finite element formulation. The Winkler model has been applied for elastic foundation. A two-node element with four degrees of freedom is suggested for finite element formulation. Displacement and rotational fields are approximated by cubic and quadratic polynomia...
متن کاملA Comparative Study of Least-Squares and the Weak-Form Galerkin Finite Element Models for the Nonlinear Analysis of Timoshenko Beams
In this paper, a comparison of weak-form Galerkin and least-squares finite element models of Timoshenko beam theory with the von Kármán strains is presented. Computational characteristics of the two models and the influence of the polynomial orders used on the relative accuracies of the two models are discussed. The degree of approximation functions used varied from linear to the 5th order. In ...
متن کاملComparison of different numerical methods for calculating stress intensity factors in analysis of fractured structures
In this research, an efficient Galerkin Finite Volume Method (GFVM) along with the h–refinement adaptive process and post–processing error estimation analysis is presented for fracture analysis. The adaptive strategy is used to produce more accurate solution with the least computational cost. To investigate the accuracy and efficiency of the developed model, the GFVM is compared with two versio...
متن کاملThe Performance of an Hexahedron C* Element in Finite Element Analysis
The performance of an 8-noded hexahedron C1* element in elasticity is investigated. Three translational displacements and their derivatives as strain in each direction are considered as degrees of freedom (d.o.f.’s) at each node. The geometric mapping is enforced using a C0 element with no derivative as nodal d.o.f.’s . The stiffness matrix of the element is also computed using a transformation...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کامل